三角函数表,三角函数表值查表大全

好知识2023-04-22 10:46:59226

三角函数概念的发生与发展,经历了一个很长的时期.从历史上看,三角学是伴随着测量与天文学的研究而产生的,为了测量就要解三角形,而每一个三角形都可以分为两个直

角三角形,所以如何解三角形的问题就更本质地变为如何解直角三角形的问题.虽然远在公元前人们就知道了直角三角形中角与角和边与边之间的关系,即A+B=90°和a的平方+b的平方=c的平方,但由此还解决不了解直角三角形的问题.例如已知直角三角形的一个锐角和任意一条边的长度,或已知任意两条边的长度,都能唯一地确定这个三角形,但是如果不通过作图和度量,纯粹用计算的方法是无法求出其他元素的值的.为了解决这一问题,促使人们考虑,必须建立直角三角形中边与角之间的联系.人们从相似三角形的原理发现,不论直角三角形的大小如何,它的任意一个锐角都可由任总两边的比值来确定.

因此,如果把各个不同锐角的直角三角形的某两边之比的比值预先算出来,就可以利用它来解直角三角形了.在古希暗时代的天文学家托勒密(约公元85—165年)的著作中,就已出现了在固定的圆中,从0°到180°每隔半度的圆心角所对的弦长表,以今天的观点来看,也就是从0°到90°每隔四分之一度的正弦表.这一弦长表的产生,对解三角形来说犹如“绝处逢生”,开拓了一条广阔的新路.同时它也孕育了锐角三角函数的概念.其后,经历了一个较长的历史时期,经过许多人的勤奋研究,制作了大量的三角函数表。

18世纪的伟大数学家欧拉首先提出了用圆中某些线段与半径之比来定义三角函数,这不但为我们今天所采用的三角函数的坐标定义奠定了基础,而且使三角学从只是研究三角形的解法中解脱出来,为三角函数的理论研究和应用开拓了广阔的天地.

在三角函数的定义中,自变量与函数间的对应关系,原是通过几何方法建立起来的,但随着近代分析数学的发展,三角学的解析理论也得到发展,现在已完全可以不依赖于几何意义的陈述,而用解析的方法来直接定义三角函数。

三角函数表值查表大全

1.jpg

正弦函数   sin(A)=a/h
余弦函数 cos(A)=b/h
正切函数 tan(A)=a/b
余切函数 cot(A)=b/a
正割函数 sec (A) =h/b
余割函数 csc (A) =h/a
注:a—所研究角的对边
b—所研究的邻边
h—所研究角的斜边

以下是三角函数表值具体的对应参数表:
1,正弦函数表 sin
sin1=0.01745240643728351   sin2=0.03489949670250097 sin3=0.05233595624294383
sin4=0.0697564737441253 sin5=0.08715574274765816   sin6=0.10452846326765346
sin7=0.12186934340514747 sin8=0.13917310096006544   sin9=0.15643446504023087
sin10=0.17364817766693033 sin11=0.1908089953765448   sin12=0.20791169081775931
sin13=0.22495105434386497 sin14=0.24192189559966773   sin15=0.25881904510252074
sin16=0.27563735581699916 sin17=0.2923717047227367   sin18=0.3090169943749474
sin19=0.3255681544571567 sin20=0.3420201433256687   sin21=0.35836794954530027
sin22=0.374606593415912 sin23=0.3907311284892737   sin24=0.40673664307580015
sin25=0.42261826174069944 sin26=0.4383711467890774   sin27=0.45399049973954675
sin28=0.4694715627858908 sin29=0.48480962024633706   sin30=0.49999999999999994
sin31=0.5150380749100542 sin32=0.5299192642332049   sin33=0.544639035015027
sin34=0.5591929034707468 sin35=0.573576436351046   sin36=0.5877852522924731
sin37=0.6018150231520483 sin38=0.6156614753256583   sin39=0.6293203910498375
sin40=0.6427876096865392 sin41=0.6560590289905073   sin42=0.6691306063588582
sin43=0.6819983600624985 sin44=0.6946583704589972   sin45=0.7071067811865475
sin46=0.7193398003386511 sin47=0.7313537016191705   sin48=0.7431448254773941
sin49=0.7547095802227719 sin50=0.766044443118978   sin51=0.7771459614569708
sin52=0.7880107536067219 sin53=0.7986355100472928   sin54=0.8090169943749474
sin55=0.8191520442889918 sin56=0.8290375725550417   sin57=0.8386705679454239
sin58=0.848048096156426 sin59=0.8571673007021122   sin60=0.8660254037844386
sin61=0.8746197071393957 sin62=0.8829475928589269   sin63=0.8910065241883678
sin64=0.898794046299167 sin65=0.9063077870366499   sin66=0.9135454576426009
sin67=0.9205048534524404 sin68=0.9271838545667873   sin69=0.9335804264972017
sin70=0.9396926207859083 sin71=0.9455185755993167   sin72=0.9510565162951535
sin73=0.9563047559630354 sin74=0.9612616959383189   sin75=0.9659258262890683
sin76=0.9702957262759965 sin77=0.9743700647852352   sin78=0.9781476007338057
sin79=0.981627183447664 sin80=0.984807753012208   sin81=0.9876883405951378
sin82=0.9902680687415704 sin83=0.992546151641322   sin84=0.9945218953682733
sin85=0.9961946980917455 sin86=0.9975640502598242   sin87=0.9986295347545738
sin88=0.9993908270190958 sin89=0.9998476951563913
sin90=1
2,余弦函数表 cos
cos1=0.9998476951563913   cos2=0.9993908270190958 cos3=0.9986295347545738
cos4=0.9975640502598242 cos5=0.9961946980917455   cos6=0.9945218953682733
cos7=0.992546151641322 cos8=0.9902680687415704   cos9=0.9876883405951378
cos10=0.984807753012208 cos11=0.981627183447664   cos12=0.9781476007338057
cos13=0.9743700647852352 cos14=0.9702957262759965   cos15=0.9659258262890683
cos16=0.9612616959383189 cos17=0.9563047559630355   cos18=0.9510565162951535
cos19=0.9455185755993168 cos20=0.9396926207859084   cos21=0.9335804264972017
cos22=0.9271838545667874 cos23=0.9205048534524404   cos24=0.9135454576426009
cos25=0.9063077870366499 cos26=0.898794046299167   cos27=0.8910065241883679
cos28=0.882947592858927 cos29=0.8746197071393957   cos30=0.8660254037844387
cos31=0.8571673007021123 cos32=0.848048096156426   cos33=0.838670567945424
cos34=0.8290375725550417 cos35=0.8191520442889918   cos36=0.8090169943749474
cos37=0.7986355100472928 cos38=0.7880107536067219   cos39=0.7771459614569709
cos40=0.766044443118978 cos41=0.754709580222772   cos42=0.7431448254773942
cos43=0.7313537016191705 cos44=0.7193398003386512   cos45=0.7071067811865476
cos46=0.6946583704589974 cos47=0.6819983600624985   cos48=0.6691306063588582
cos49=0.6560590289905074 cos50=0.6427876096865394   cos51=0.6293203910498375
cos52=0.6156614753256583 cos53=0.6018150231520484   cos54=0.5877852522924731
cos55=0.5735764363510462 cos56=0.5591929034707468   cos57=0.5446390350150272
cos58=0.5299192642332049 cos59=0.5150380749100544   cos60=0.5000000000000001
cos61=0.4848096202463371 cos62=0.46947156278589086   cos63=0.4539904997395468
cos64=0.43837114678907746 cos65=0.42261826174069944   cos66=0.4067366430758004
cos67=0.3907311284892737 cos68=0.3746065934159122   cos69=0.35836794954530015
cos70=0.3420201433256688 cos71=0.32556815445715675   cos72=0.30901699437494745
cos73=0.29237170472273677 cos74=0.27563735581699916   cos75=0.25881904510252074
cos76=0.24192189559966767 cos77=0.22495105434386514   cos78=0.20791169081775923
cos79=0.19080899537654491 cos80=0.17364817766693041   cos81=0.15643446504023092
cos82=0.13917310096006546 cos83=0.12186934340514749   cos84=0.10452846326765346
cos85=0.08715574274765836 cos86=0.06975647374412523   cos87=0.052335956242943966
cos88=0.03489949670250108 cos89=0.0174524064372836
cos90=0
3,正切函数表 tan
tan1=0.017455064928217585   tan2=0.03492076949174773 tan3=0.052407779283041196
tan4=0.06992681194351041 tan5=0.08748866352592401   tan6=0.10510423526567646
tan7=0.1227845609029046 tan8=0.14054083470239145   tan9=0.15838444032453627
tan10=0.17632698070846497 tan11=0.19438030913771848   tan12=0.2125565616700221
tan13=0.2308681911255631 tan14=0.24932800284318068   tan15=0.2679491924311227
tan16=0.2867453857588079 tan17=0.30573068145866033   tan18=0.3249196962329063
tan19=0.34432761328966527 tan20=0.36397023426620234   tan21=0.3838640350354158
tan22=0.4040262258351568 tan23=0.4244748162096047   tan24=0.4452286853085361
tan25=0.4663076581549986 tan26=0.4877325885658614   tan27=0.5095254494944288
tan28=0.5317094316614788 tan29=0.554309051452769   tan30=0.5773502691896257
tan31=0.6008606190275604 tan32=0.6248693519093275   tan33=0.6494075931975104
tan34=0.6745085168424265 tan35=0.7002075382097097   tan36=0.7265425280053609
tan37=0.7535540501027942 tan38=0.7812856265067174   tan39=0.8097840331950072
tan40=0.8390996311772799 tan41=0.8692867378162267   tan42=0.9004040442978399
tan43=0.9325150861376618 tan44=0.9656887748070739   tan45=0.9999999999999999
tan46=1.0355303137905693 tan47=1.0723687100246826   tan48=1.1106125148291927
tan49=1.1503684072210092 tan50=1.19175359259421   tan51=1.234897156535051
tan52=1.2799416321930785 tan53=1.3270448216204098   tan54=1.3763819204711733
tan55=1.4281480067421144 tan56=1.4825609685127403   tan57=1.5398649638145827
tan58=1.6003345290410506 tan59=1.6642794823505173   tan60=1.7320508075688767
tan61=1.8040477552714235 tan62=1.8807264653463318   tan63=1.9626105055051503
tan64=2.050303841579296 tan65=2.1445069205095586   tan66=2.246036773904215
tan67=2.355852365823753 tan68=2.4750868534162946   tan69=2.6050890646938023
tan70=2.7474774194546216 tan71=2.904210877675822   tan72=3.0776835371752526
tan73=3.2708526184841404 tan74=3.4874144438409087   tan75=3.7320508075688776
tan76=4.0107809335358455 tan77=4.331475874284153   tan78=4.704630109478456
tan79=5.144554015970307 tan80=5.671281819617707   tan81=6.313751514675041
tan82=7.115369722384207 tan83=8.144346427974593   tan84=9.514364454222587
tan85=11.43005230276132 tan86=14.300666256711942   tan87=19.08113668772816
tan88=28.636253282915515 tan89=57.289961630759144
tan90=(无限)
4,余切函数 cot
cot89=0.017455064928217585   cot88=0.03492076949174773 cot87=0.052407779283041196
cot86=0.06992681194351041 cot85=0.08748866352592401   cot84=0.10510423526567646
cot83=0.1227845609029046 cot83=0.14054083470239145   cot81=0.15838444032453627
cot80=0.17632698070846497 cot79=0.19438030913771848   cot78=0.2125565616700221
cot77=0.2308681911255631 cot76=0.24932800284318068   cot75=0.2679491924311227
cot74=0.2867453857588079 cot73=0.30573068145866033   cot72=0.3249196962329063
cot71=0.34432761328966527 cot70=0.36397023426620234   cot69=0.3838640350354158
cot68=0.4040262258351568 cot67=0.4244748162096047   cot66=0.4452286853085361
cot65=0.4663076581549986 cot64=0.4877325885658614   cot63=0.5095254494944288
cot62=0.5317094316614788 cot61=0.554309051452769   cot60=0.5773502691896257
cot59=0.6008606190275604 cot58=0.6248693519093275   cot57=0.6494075931975104
cot56=0.6745085168424265 cot55=0.7002075382097097   cot54=0.7265425280053609
cot53=0.7535540501027942 cot52=0.7812856265067174   cot51=0.8097840331950072
cot50=0.8390996311772799 cot49=0.8692867378162267   cot48=0.9004040442978399
cot47=0.9325150861376618 cot46=0.9656887748070739   cot45=0.9999999999999999
cot44=1.0355303137905693 cot43=1.0723687100246826   cot42=1.1106125148291927
cot41=1.1503684072210092 cot40=1.19175359259421   cot39=1.234897156535051
cot38=1.2799416321930785 cot37=1.3270448216204098   cot36=1.3763819204711733
cot35=1.4281480067421144 cot34=1.4825609685127403   cot33=1.5398649638145827
cot32=1.6003345290410506 cot31=1.6642794823505173   cot30=1.7320508075688767
cot29=1.8040477552714235 cot28=1.8807264653463318   cot27=1.9626105055051503
cot26=2.050303841579296 cot25=2.1445069205095586   cot24=2.246036773904215
cot23=2.355852365823753 cot22=2.4750868534162946   cot21=2.6050890646938023
cot20=2.7474774194546216 cot19=2.904210877675822   cot18=3.0776835371752526
cot17=3.2708526184841404 cot16=3.4874144438409087   cot15=3.7320508075688776
cot14=4.0107809335358455 cot13=4.331475874284153   cot12=4.704630109478456
cot11=5.144554015970307 cot10=5.671281819617707   cot9=6.313751514675041
cot8=7.115369722384207 cot7=8.144346427974593   cot6=9.514364454222587
cot5=11.43005230276132 cot4=14.300666256711942   cot3=19.08113668772816
cot228.636253282915515 cot1=57.289961630759144
cot0=(无限)


本文链接:http://phb.hhpj.net/post-10473.html

数学

阅读更多